edge isomorphic - significado y definición. Qué es edge isomorphic
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es edge isomorphic - definición

Computably isomorphic

Edge device         
ENTRY POINT INTO A COMPUTER NETWORK
Edge switch; Edge path adapter; Edge concentrator
An edge device is a device that provides an entry point into enterprise or service provider core networks. Examples include routers, routing switches, integrated access devices (IADs), multiplexers, and a variety of metropolitan area network (MAN) and wide area network (WAN) access devices.
Selwyn Edge         
  • Mills]] second from left
  • Gladiator]]
  • alt=Man sitting in open-top vehicle
  • Breaking the 24-hour distance record
BRITISH BUSINESSMAN AND RACING DRIVER (1868-1940)
Selwyn Francis Edge; S. F. Edge
Selwyn Francis Edge (1868–1940) was a British businessman, racing driver, cyclist and record-breaker. He is principally associated with selling and racing De Dion-Bouton, Gladiator; Clemént-Panhard, Napier and AC cars.
Cutting Edge (recordings)         
SERIES OF ALBUMS
Cutting Edge 1; Cutting Edge 2; Cutting Edge 1 and 2; Cutting Edge 3; Cutting Edge Fore; Cutting Edge 3 and Fore
Cutting Edge is a series of recordings made by the British rock band Delirious?. The songs were originally written for a regular youth event, Cutting Edge, in the band's home town of Littlehampton.

Wikipedia

Computable isomorphism

In computability theory two sets A ; B N {\displaystyle A;B\subseteq \mathbb {N} } of natural numbers are computably isomorphic or recursively isomorphic if there exists a total bijective computable function f : N N {\displaystyle f\colon \mathbb {N} \to \mathbb {N} } with f ( A ) = B {\displaystyle f(A)=B} . By the Myhill isomorphism theorem, the relation of computable isomorphism coincides with the relation of mutual one-one reducibility.

Two numberings ν {\displaystyle \nu } and μ {\displaystyle \mu } are called computably isomorphic if there exists a computable bijection f {\displaystyle f} so that ν = μ f {\displaystyle \nu =\mu \circ f}

Computably isomorphic numberings induce the same notion of computability on a set.